
NONSTEADY DIFFUSION WITH VARIABLE COEFFICIENTS IN 

THE BOUNDARY CONDITIONS 

R. M. Cotta and C. A. C. Santos UDC 532.72 

A method of generalized integral transformations is used to solve the problem 

of nonsteady diffusion with time-dependent coefficients in the boundary 

conditions. Such an approach does not require a solution of an integral 

equation for the surface potential or of a time-dependent eigenvalue problem. 

A formal solution is obtained on the basis of an infinite system of ordinary 

differential equations. An example is considered and numerical results are 

discussed. 

Generalized solutions for an extensive class of linear problems of diffusion, 

obtained using the method of integral transformations, have been given in [i]. Because of 

the limited applicability of that method, however, some problems of heat and mass transfer 

of practical importance were not considered. They include the diffusion problem with time- 

dependent coefficients in the boundary conditions. 

In [2] such a class of problems has been formally reduced to an infinite system of 

ordinary differential equations. The formal solution obtain has been expanded to 

multilayered regions [3] and to variable coefficients [4]. The approach developed in [2] 

was then used to obtain numerical results for the problem of forced internal convection 

with variable heat-transfer coefficients in [5, 6], in which the corresponding time- 

dependent eigenvalue problem was solved and numerical integration was used for the more 

general case. 

It has been suggested that the ideas of generalized integral transformations be used 

to solve diffusion problems with variable coefficients [7-9]. Such an approach would get 

around the problems associated with the time-dependence of the eigenvalue problem and the 

need to solve an integral equation for the surface potential. The problem is solved by 

reducing the appropriate system of ordinary differential equa~ions. An approximate but 

explicit analytical solution is obtained on the basis of the domination of diagonal terms 

in the matrix of coefficients of that system. 

In the analysis presented here, the approach developed in [7] is altered so that it 

can be extended to time-dependence coefficients. The numerical results obtained for the 

problem of the thermal conductivity of a plate for a variable Biot number are compared with 
those published in [10-12]. 

The starting point of our analysis will be the fairly general formulation 

~T (x, t) 
w(x) O - - - - ~ = v K ( x ) v T ( x ,  t) - -  d (x) T (x, t )+  P(x, t), ( l a )  

x~V, t>O,  

in a homogeneous finite region V with time-dependence coefficients ~(x, t) or ~(x, t) under 

the boundary conditions 

(x, t)T(x,t)+~ (x) K (x) OT(x,t) (Ib) 
=q~(x,t), x6S, t>O, 

On 

and the initial condition 

T ( x , t )  = f(x),  x6V, t = O, (ic) 

where a/an denotes a derivative with respect to the outward normal to the boundary surface 
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TABLE i. Comparison of Different Low-Order Solutions 

and a Previously Published Approximate Solution for 

Bi(t) = 1.2 - e "t 

0,5 

1,0 

1,5 

2,0 

2,5 

3,0 

3,5 

4,0 

(1, t)+l * (o, t)+l 

data of 
[lO] 

data of: 
[10] 

0,5560 

0,7143 

0,8135 

0,8983 

0,9275 

0,9543 

0,9746 

0,9902 

from Eq. 
(10a) ,~ 

0,5064* 
0,5204** 
0,5370*** 
0,6449 
0,6956 
0,6910 
0,7638 
0,7983 
0,7906 
0,8503 
0,8659 
0,8594 
0,9079 
0,9112 
0,9065 
0,9444 
0,9413 
0,9382 
0,9668 
0,9613 
0,9593 
0,9803 
0,9746 
0,9733 

from Eq. 
(12b) 

0,5351 
0,5350 
0,5353 
0,6773 
0,6777 
0,6776 
0,7814 
0,7817 
0,7816 
0,8540 
0,8541 
0,8540 
0,9032 
0,9032 
0,9032 
0,9361 
0,9361 
0,9360 
0,9529 
0,9579 
0,9579 
0,9723 
0,9723 
0,9723 

from Eq. from Eq. 

0,3971 

0,5691 

0,7016 

0,8151 

0,8779 

0,9281 

0,9555 

0,9822 

(loa) 

0,4323 
0,4026 
0,3987 
0,5888 
0,5596 
0,5512 
0,7258 
0,6900 
0,6823 
0,8261 
0,7877 
0,7821 
0,8929 
0,8571 
0,8534 
0,9353 
0,9047 
0,9025 
0,9613 
0,9369 
0,9356 
0,9771 
0,9583 
0,9576 

(iZb) 

0,4044 
0,4047 
0,4045 
0,5408 
0,5411 
0,5409 
0,6701 
0,6702 
0,6700 
0,7718 
0,7718 
0,7717 
0,8456 
0,8455 
0,8454 
0,8968 
0,8967 
0,8967 
0,9316 
0,9314 
0,9314 
0,9548 
0,9547 
0,9547 

Note. (+) : complete solution with 80 terms 

*Bi0* = 0.2. 
**Bi* = 1.2. 

***Bi* = Bi*. 

(N = SO). 

It is impossible to solve the problem (i) by the classical method of integral 

transformation [i] because of the coefficient ~(x, t). Let us consider the spectral problem 

vK (x) V* (~, x) + [,~w (x) - -  a (x)] r (~, x) = O, xEV, (2a) 

with the boundary conditions 

~* (x) r (~  x) + ~(x)K (x) 0r (~, x) = 0, x6S, (2b) 
On 

where ~*(x) is some constant that characterizes ~(x, t). It may be the coefficient averaged 

over time, its value at the initial or final time, etc. 

The formulation (2) enables us to use the integral transformation 

'~i(t) = ,I" ~(x) k i (x) T(x, t) do (3a) 
v 

with the inversion equation 

T (x, t) = ~ k~ (x) ~ (t), 
i = 0  

where the kernel of the transformation is defined by the equation 

(3b) 

k~(x) = r x) (3c) 
]%[1/2 
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TABLE 2. Convergence of the Complete Solution at the 

Plate Surface [4(1, t) + i] 

2o I 4o I oo I 8o 

0,500 
1,00 
1,50 
2,00 
2,50 
3,00 
3,50 
4,00 

0,5343 
0,6766 
0,7~11 
0,8539 
0,9032 
0,9362 
0,9581 
0,9725 

Bi*=0,2 
0,5348 
0,6771 
0,7813 
0,8539 
0,9032 
0,9361 
0,9580 
0,9724 

0,5350 
0,6772 
0,7814 
0,8539 
0,9032 
0,9361 
0,9579 
0,9723 

0,535I 
0,6773 
0,7814 
0,8540 
0,9032 
0,9361 
0,9579 
0,9723 

0,500 
1,00 
1,50 
2,00 
2,50 
3,00 
3,50 
4,00 

0,5342 
0,6782 
0,7822 
0,8545 
0,9035 
0,9362 
0,9580 
0,9724 

Bi*=l,2 
0,5347 
0,6778 
0,7819 
0,8542 
0,9033 
0,9361 
O,9579 
0,9723 

0,5349 
0,6777 
0,7818 
0,8541 
0,9032 
0,9361 
0,9579 
0,9723 

0,5350 
0,6777 
0,7817 
0,8541 
0,9032 
0,9361 
0,9579 
0,9723 

0,500 
1,00 
1,50 
2,00 
2,50 
3,00 
3,50 
4,00 

0,5351 
0,6779 
0,7819 
0,8542 
0,9032 
0,9361 
0,9579 
0,9723 

Bi*=Bi* 
0,5352 
0,6777 
0,7817 
0,8541 
0,9032 
0,9361 
0,9579 
0,9723 

0,5352 
0,6776 
0,7817 
0,8541 
0,9032 
0,9360 
0,9579 
0,9723 

0,5353 
0,6776 
0,7816 
0,854O 
0,9032 
0,9360 
0,9579 
0,9723 

and the normalizing integral is defined as 

Ni =- I w (x) ~2 (~i, x) dr. 

After multiplication by ~vKi(x)dvand integration over the volume V, the initial 
problem (i) is transformed to 

dt +~iT i ( t )  ~]I/2 K(X) l~i(X) OT(x, t) Ol~i(x) 
-.i On On 

where 

~(t) = ~ k~ (x) P (x, t) dr. 
v 

multiplying Eq. 

K(x) [*i ( x ) - -  
[ 

The surface integral in Eq. (4a) is found by multiplying Eq. (lb) by r 
(2b) by T(Xs, t), and subtracting the results. We finally obtain 

OT 0n(X' t) T (x, t) 0~,0.(x) ] _-- __/__11~ (x) [q~ (x, t) % (x) + (cz* (x) - -  cz (x, t)) % (x) T (x, t)] 

for X ~ X s. 

Equation (4a) thus reduces to 

dY~ (t) 
dt 

2~ 
+- ~iT i (l) -- - -  1 S 1 �9 N~/2 ---~-x) (co (x) --r162 t))~bi(x ) T(x, t) ds=g~(t), t > 0 ,  

(3d) 

(4a) 

(4b) 

(5) 

(6a) 
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TABLE 3. Convergence of the Complete Solution at the 

Center of the Plate [~(0, t) + I] 

N 
t 

20 I 40 I 60 80 

0,500 
1,00 
1,50 
2,00 
2,50 
3,00 
3,50 
4,00 

0,500 
1,00 
1,50 
2,00 
2,50 
3,00 
3,50 
4,00 

0,500 
1,00 
1,50 
2,00 
2,50 
3,00 
3,50 
4,00 

0,4044 
0,5410 
0,6706 
0,7725 
0,8463 
0,8974 
0,9321 
0,9552 

0,4056 
0,5422 
0,6711 
0,7724 
0,8459 
0,8970 
0,9316 
0,9548 

0,4050 
0,5414 
0,6704 
0,7719 
0,8456 
0,8968 
0,9315 
0,9547 

Bi*=0,2 
0,4044 
0,5409 
0,6703 
0,7721 
0,8458 
0,8970 
0,9317 
0,9550 

Bi*=l,2 
0,4050 
0,5415 
0,6705 
0,7720 
0,8457 
0,8968 
0,9315 
0,9547 

Bi*=B~* 

0,4047 
0,5411 
0,6702 
0,7718 
0,8455 
0,8967 
0,9314 
0,9547 

0,4044 
0,5409 
0,6701 
0,7719 
0,8457 
0,8969 
0,9316 
0,9549 

0,4048 
0,5412 
0,6703 
0,7719 
0,8456 
0,8967 
0,9315 
0,9547 

0,4046 
0,5410 
0,670t 
0,7717 
0,8454 
0,8967 
0,93t4 
0,9547 

0,4044 
0,5408 
0,6701 
0,7718 
0,8456 
0,8968 
0,9316 
0,9548 

0,4047 
0,5411 
0,6702 
0,7718 
0,8455 
0,8967 
0,9314 
0,9547 

0,4045 
0,5409 
0,6700 
0,7717 
0,8454 
0,8967 
0,9314 
0,9547 

where 

where 

- 1 ~ O ( x ,  t) **(x) ds. a (t) = ~ (t) + ~ ~ [~ (x) 
(6b) 

Using the inversion equation (3b), we obtain an infinite system of ordinary equations 

d-----~ + ~ ? i  (t) - -  X Am (t) Tj (l) = gi (t), 
i=! (7a) 

i - -  1,2 . . . . .  t > 0 ,  

jv,/2Arl/2 (~z* (x) - -  (z (x, t)) ~ ,  (x) Vs (x) ds. 

Transformation of the initial conditions yields 

"L (o) = 7~ = 
- ' i  

It is convenient to write the systems (7) in the matrix form 

y' § A (t)y (t) = g (t), 

y (0) = f, 

(Yb) 

(7c) 

(8a) 

(8b) 
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where A(t) = {aij } is a symmetric N • N matrix with elements 

a~j = 8~jp,~ - -  A~ (t), 

a n d  

0, i------~j, 
8~;= 1, i = j ,  

y = { ~  (t), 7"~ (t), ..., 7"N (t)} r , 

(8c) 

(8d) 

(8e) 

g = { ~  (t), ~-~ (t) . . . . .  ~>, (t)} ~, (8f) 

f =  {L ,  h ,  ..., 7N} ~. (8g) 

Here N must be large enough to ensure satisfactory convergence, as noted in [7]. 

Using the DGEAR procedure in the IMSL software package [13], we may easily obtain the 

vector of the transformed potential system (8). Subsequent application of the inversion 

equation (3b) enables us to calculate the required potential T(x, t). 

An approximate but explicit analytical solution to the system (8) has also been 

suggested in [7]. Using the dominant role of the main diagonal of the matrix in the 

summation in Eq. (7a), we can take i = j, which leads to the system 

dT~.~ ~-(~--A[~(t))T~,z=g~(t), i =  1,2 . . . . .  t ~ 0 ,  
dt 

(9a) 

Ti,z (0) - -? i ,  (9b) 

which has the solution 

7~i,l(t)=~exp- a.( t ' )d t '  +!gi(t')exp- au(t")dt" dr', (10a) 

where 

Ai*i (t) = ,j ~v~ ~ (~* (x) - ~ (• t)) ,~ (x) ds, 

a ,  ( t ) = u ~  - A,-* (0. 

(10b) 

(10c) 

Such an explicit solution, and convenient for practical purposes, lets us obtain 

results that are more or less precise in some time interval, depending on the values of the 

nondiagonal elements Aij (t) and the way in which a*(x) is chosen. Here the influence of the 

nondiagonal terms on the solution can be taken into account approximately using one 

analytical iteration of the complete system. The resulting system has the form 

dT i ,  h , 
dt + ( ~  - -  A.i (t)) f~,h = O~ (t), i = 1,2 . . . . .  t > 0, 

~ ,~  (o) = 5,  

(lla) 

(llb) 

where 

~ (t) = -g~ (0 + ~ AT,. (t)-rj , (0. 
j=l  
j =i 

(11c) 
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Its solution can be written in the form 

(12a) 

with a correction term 

(12b) 

We may assume that such an approach increases the accuracy of the results and permits 

the use of explicit solutions for a wider time interval and a larger range of boundary 

coefficients. 

It should be noted that for ~ = ~(x) not dependent on time, each of these solutions 

leads to the exact results obtained in [I]. 

To illustrate the approach suggested here, let us consider the heating of a flat wall 

with a boundary conditio of the third kind and a variable Biot number [i0, ii]. We 

formulate the problem in the dimensionless form 

d(D (x, t,) a2q) (x, t) (13a) 
= , O < x < l ,  t > O ,  

at Ox ~- 

with the boundary conditions 

aag(x,  t) _ o, x = o, t > o ,  (13b) 
Ox 

a~) (xl t) 
+ Bi(t)(D(x, t ) = O ,  x =  I, t > O ,  (13c) 

OX 

and the initial conditions 

(D(x, 0 ) = ~ o ,  O ~ x ~ l .  (13d) 

The solution of the corresponding eigenvalue problem is 

(~i, X) -=: cos (Jzix), (14a) 
1 [ sin(2~)], 

Ni ----- T ] -~ 2~i (14b) 

while gi are roots of the characteristic equation 

~itg 9i = Bi*. (14c) 

A comparison with the system (7) enables to write 

A~ (t) = 

From (10a) we then get 

~~ (t) = o, 

1 
~,1/2^1x/2 (Bi* -- Bi (t)) cos ~ cos [~j, 
�9 v i  . , 1  

-fi = @o sin ~i 

(15a) 

(15b) 

(15c) 

2[ I 7"i,t(l) = f~e ~' t exp i A* (t') dr' , 
o 

(16a) 
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where 

l (16b) 
A u  (t) = ~ (Bi* - -  Bi (t)) cos2~i. 

This solution should be used cautiously near the boundary x = i, since the spectral 

problem (2) does not correspond completely to the boundary conditions of the problem (i) 

being solved. To derive improved equations for the flux and temPerature at the surface as 

functions of the average potential, we integrate Eq. (i) in the region V. For the example 

under consideration, we obtain 

Oq) (x, l) x=~ - -  dOom(t)  

Ox dt ' 

or  

o(1, t)= 1 dq)av (t) 

Bi (t) dt 

where the dimensionless temperature has the form 

%0 (t) = = ~ ..7, 7"~ (t). 
i=! (~30 

(17a) 

, ( 1 7 b )  

(17c) 

TO have a base for comparison, we use the results published in [i0], in which ~0 = 

-0.664 and Bi(t) = 1.2 - e "t in the interval from t = 0 to t = 0.4. To illustrate how the 

end results are affected by the different ways of replacing the variable Biot number by a 

constant, we consider the cases 

1 Bi0* = 0.2 (for t = 0); 

2 Bi~* = 1.2 (for t = co) ; 

3 gi*= ] t: b Bi (t) dt  = a - -  (1 -- e - t f ) ,  
t: ~ t: 

where Bi(t) = a - be "t and t = 0.4. 

The results of a numerical calculation of the temperature at the center and on the 

surface of a plate for selected Biot numbers are given in Table I. We give both data from 

[i0] and our data from Eqs. (10a) and (12b). The most accurate of these are the results 

calculated from Eqs. (12b) with allowance for 80 series terms. 

One may see that replacing the variable Biot number by a constant Bi = 0.2 provides 

higher accuracy than in the other two cases. This is because the influence of the 

nondiagonal matrix elements is more pronounced at the start of the process. These results 

can be improved by iteration. 

It is interesting to note that the solutions obtained from Eq. (10a) are more 

accurate at the center of the plate. This is explained by the fact that errors originating 

at the surface die out as they "diffuse" toward the center of the plate. Such a phenomenon 

has been noted in [i0]. In Tables 2 and 3 we give the results for the temperature at the 

surface and the center of a plate obtained using the DGEAR procedure from the IMSL package 

[13]. This was done to observe the convergence of the solution from Eq. (12b) as a function 

of the number of terms. The specified accuracy is reached for the 80 • 80 system, but even 

the small 20 • 20 system yields fairly accurate results with an insignificant volume of 

calculations. 

Consequently, our approach makes it possible to calculate an important class of 

problems on the basis of an analytical solution and offers an interesting alternative to 

the well-known numerical methods. 

NOTATION 

Bi(t), time dependence of the Biot number in Eq. (13c); Bi*, characteristic Biot 

number for the problem (13); d(x), coefficient to the linear dissipation term in Eq. (la); 

f(x), potential distribution at t = 0; K(x), coefficient to the diffusion term in Eq. (la); 

Nj, normalization integral in the auxiliary problem (2); P(x, t), source function in Eq. 

(la); t, time or an analytical independent variable; T(x, t), distribution of temperature 

or concentration; Ti(t), potential transformed with respect to the integral; w(x), coeffi- 
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cient to the nonsteady term (or convection) in Eq. (la); x, position vector; y(t), vector 
of potentials transformed with respect to potentials; a(x, t), time dependence of the 
coefficients of the boundary condition, as in Eq. (Ib); a*(x), characteristic coefficient 
of the boundary condition; ~(x), coefficient of the boundary condition, as in Eq. (ib); 
�9 (x, t), inhomogeneous term in the boundary condition, Eq. (Ib); #(Pl, x), eigenfunction in 
the auxiliary problem (2); ki(x), symmetric kernel in the integral transformation pair 
(3a), (3b); Pl, eigenvalues in the auxiliary problem (2); ~(x, t), distribution of 

dimensionless temperature in the problem (13); ~0, dimensionless initial temperature in the 
problem (13). Indices: overbar, quantity transformed relative to the integral; i, J, 
orders of the eigenvalues, i, j ffi I, 2 .... ; 2, low-order solution; h, low-order iterative 

solution. 
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